“So When Is a Horse NOT Like a Tornado . . . ?”

Well, I wondered how long it would take for someone to say to me, in response to yesterday’s post, “Dawn, when is a horse NOT like a tornado?!  Ha ha ha!!”  But I sure didn’t think it would be a mere 45 minutes.

Yet I should have known.  Because if the metaphor seems meaningful to you, you’re in good company — one that spans more than one culture and at least several hundred years.  In fact, in its largest and most profound form, this very significant metaphor has been around for literally thousands of years.

In the American West, the “tall tale” figure Pecos Bill was reputed to have been such an expert “bronc” rider that he rode a tornado into the ground and tamed it enough that it finally disappeared.  Here’s the cover of a book by Wyatt Blassingame that tells the story, as one example. You can also read the story at the American Folklore website here.

In 1948, Disney portrayed Pecos Bill’s ride in a cartoon about tall tale figures that included Paul Bunyan and his blue ox, Babe.  In the series of still images below, you see Pecos Bill approaching the tornado on horseback, then leaping from his trusty horse to the tornado (the way a cowboy might leap from a trained horse to one wearing only a rope halter), and then riding the tornado long enough to tame it down to a tiny whirlwind.  Clearly the tornado here is behaving like a stereotypical wild, “unbroken” horse and Pecos Bill is using his skills as a rider of such horses to handle the tornado the same way.  In other words:  a tornado is a lot like a horse.

Stills from Disney’s 1948 cartoon with Pecos Bill. In the first panel, Pecos approaches the tornado horseback. In the second, he has leaped from his horse to the tornado and is riding it. (The red arrow I’ve added shows you where Pecos is.) In the last image, Pecos has “ridden out” the tornado so much that it’s shrunk in size and power. His horse looks on.

But it’s not just Western cowboy culture that links horses and tornadoes.  So do the people of some American Indian nations of the Great Plains.  The emphasis in these stories is very different, however — essentially the opposite of what it is in the Pecos Bill (and Paul Bunyan) “tall tale” type of mythos that emphasizes human domination of nature.

Here’s an illustration from the book The Way to Rainy Mountain by Kiowa author N. Scott Momaday, showing a horse as a tornado and a tornado as a horse.  It accompanies his retelling of the Kiowa traditional story of how horses were created — and how they’re literally related to tornadoes.  Since it’s a sacred story to the Kiowa people, I’ll send you to Momaday’s book to read it yourself rather than relate it here.  The book is so prominent (Momaday won a Pulitzer Prize for another of his books, House Made of Dawn) that it should be in your local library if you can’t purchase a copy.

The fairly well-known book Black Elk Speaks is author John Neihardt’s recorded account of the autobiographical narrative told him by Oglala Lakota holy man Black Elk.  The pivotal life vision that Black Elk experienced involved both horses and a magnificently powerful storm that wound up carrying Black Elk into the sky.  He describes essentially riding a tornado during part of the vision, looking down at the ground through the hole in the clouds where the funnel is.  Again, since the vision is a sacred text to the Lakota, I will refer you to the book rather than retell it.  You can, however, read the text online here.

Obviously part of the similarity between horses and tornadoes lies in their whirling motion.  That’s undoubtedly a large part of what created the similarity in tall-tale-tellers’ minds between tornadoes and the kind of “broncs” Texas cowboys used to ride through cowcamps every morning, trying to “ease them into” the day’s work.  There are many written records of these daily contests between determined cowboys and barely half-trained horses, and here’s an 1897 painting by Charles Russell depicting it.  But that isn’t the whole story.

The larger story, and the one that’s immediately apparent in the Kiowa and Lakota narratives, is about the profound physical power of a horse. This power is seen as so immense that it makes horses and storms, both, a kind of double-edged sword:  extremely beneficial but dangerous at the same time.  This duality is quite visible in the Momaday and Black Elk stories, which point out that the storms that bring tornadoes also bring life-giving rain.  Without them, the land suffers drought and dies.  So whereas the final outcome in the Pecos Bill story involves destruction of the tornadic storm (of which even the clouds and rain disappear), in the two Plains tribe stories the outcome is a relationship — one that allows healing rain to be delivered, but the destructive aspects of the storm to be mitigated.

This dual nature of the power in horses has deep roots in Western culture.  The Ancient Greek mythos, starting around 2600 years ago, included stories of beings called Centaurs, which are today envisioned as largely heroic or at least benign creatures with horse bodies and human torsos, arms, and heads.  But it wasn’t that way in the original stories.  Originally, Centaurs were bestial and animalistic, prone to drunken orgies and violence.  (The exception was the great Centaur healer and teacher Chiron.)  In one famous story, Centaurs attacked the wedding of Pirithous, the King of a people called the Lapithae, in order to carry off his bride and all the women in the party.  Their intentions were absolutely the worst imaginable, and a tremendous battle ensued which the Centaurs finally lost.  Here’s a painting from about 1715 depicting that event by Italian artist Sebastiano Ricci.

The Centaurs here represent the power in horses as being something strong that can be very destructive if humans are not exceedingly careful.  Significantly, by coupling the horse, physically, to men, it links this dual-edged power to human beings as well.  It’s both wonderful and enlightening, therefore, to learn the bride’s name in this story that represents ancient Greek uneasiness with the animal power of both horses and humans:  “Hippodamia”.  It means, in Greek, “Horse Tamer.”

Enjoy turning that over in your mind.  There’s a lot of food for thought there, and it most definitely impacts the relationships we have, as well as the relationships we assume we “should” have, with horses today in American culture.  That’s why I have, at times, taught a Horses & Story seminar.  Integrating different ways of understanding horses really is powerful.

When Is a Horse Like a Tornado?

I had a friend several years ago who was an artist, who became absolutely captivated by tornadoes after we saw one once, and lived to tell the tale.

I am supposed to be writing about horse hoof stresses in this post.  I’ve sat here quite a while today, typing variations of the lead sentence: “There are several factors that influence the stress on a horse’s foot.”  And it just won’t go anywhere, because it’s “the artist and the tornado story” that wants to come out today. You’ll see why by the end of the post. Trust me.

The artist and I stood literally shoulder to shoulder for what felt like a week, mesmerized, watching the clouds spin down beneath the central updraft, coalesce into a funnel, fall apart, and pour upward back into the core like an inverted waterfall, over and over again.  It wasn’t a very big tornado.  That was probably a good thing.  (Don’t try this at home, adult supervision only, your mileage may vary, etc.)  I have to admit, it was an astonishing thing to see.  As far as I know, the artist never quite got over it.

Every time I talk to people about horse biomechanics, something comes up in our conversation that makes me think about form and function . . . and the enormous problem people have with remembering that the “function” part matters.  A lot.  The artist brought this aspect of peoples’ thinking home to me real fast that day, maybe the first time I’d ever realized how separated form and function can be if people aren’t used to thinking about it.  Because after the funnel was carried away on the moving squall line, and the storm had rained itself out over the tops of our pointed little heads (we were lucky not to have been pulverized as well as mesmerized), the artist turned to me with rivulets streaming out of her soaking hair and running down her forehead, and asked, “Why is a tornado shaped like a triangle?”

She was thinking about the shape shown in the NOAA photo to the left.  It’s a common enough shape for a tornado, but it’s certainly not “standard”.  Here are more NOAA images to give you an idea of the range of variation.

The thing that really threw me about the artist’s question was that the tornado we’d been watching as it tried to form and kept falling apart never looked like any of these pictures, though.  It looked a lot more like the still image below from video of a rotating wall cloud near Terre Haute, Indiana in 2007.  The red arrow points to a dark circular structure with a fairly narrow, paler rim of clouds that can be seen, in the video, to be rotating slowly with the entire cloud immediately surrounding it.  (It is, in fact, an example of the infamous “rotating wall cloud” of severe weather alerts.)  This is where a tornado funnel can form.  It was a structure like this that we saw forming “sides” several times before falling apart and “pouring” over its own lip and up into the clouds again, a number of times in succession.

In other words, the image we actually saw, the artist and I, was one of circular rotation.  Furthermore, it was absolutely clear as crystal to both of us that within the “funnel-to-be” that kept forming and falling apart, the overall direction of movement was up.  And that is how tornadoes work, really.  They are a vortex, having a spiralling motion that goes from the ground up into the clouds, spinning as it goes.  It is the spinning winds of the vortex that create the distinctive “tornado vortex” signature on radar that identifies a tornado’s likely existence even at night when it can’t be seen by weather spotters.  Because the tornado is spinning in a circle that’s parallel to the ground, Doppler radar shows winds on one side of the funnel as going away from the station, and winds on the other side of the funnel as coming towards the station.  Since the radar creates different-color images for winds blowing away and winds blowing towards, there are two different direction-colors of wind smack next to each other on the radar.  That’s the vortex signature, and it’s created by the rotating circle of wind.

Interestingly, about five years before the artist and I encountered the nascent tornado I’ve described, I had spent several long months putting information about things like “tornado vortex signatures” onto a series of educational pages for the non-profit I worked for, using tornadoes to explain the power of intergrating different ways of knowing, learning about, and responding to the natural world.  The artist knew that I had spent hours going over reference materials, talking to experts at NOAA and the NSSL, and writing everything up because she had proof-read and edited every one of those pages for me at the time.

So although I understood why she figured I would have at least a semi-reasonable answer to her question, “Why is a tornado shaped like a triangle,” at the same time I was stunned.  Because not only had she read, in detail, about how tornadoes function, she had just seen it with her own eyes:  rotation and updraft, both.  Yet somehow she had fastened onto a stereotypical shape she’d seen somewhere, a form — one she certainly hadn’t gotten from the clouds that were still trailing over our heads that afternoon — as the “meaningful” shape of a tornado.  And the evidence that she saw the triangle form as meaningful is that she asked WHY the tornado was that shape.

The question “why” only has meaning if a person wants to know the connection between a form and its cause.  And the “cause” or “reason” for form is almost always function.

If you look at the line of pictures above, again, you will see that understanding how tornadoes work, functionally — that they are a rotating vortex — makes sense of the wide variety of forms shown there.  Sometimes the clouds are way up high above the ground and the rotation’s diameter is narrow, so the tornado’s form is that of a long rope.  Sometimes the rotation’s diameter is so large that a tornado is wider than it is tall, and the form is then like a wedge that blots out much of the sky at the horizon.  When the clouds above blow along faster than the base of the thing moves, the tornado leans sideways, the part on the ground trailing the part at the cloud.  When condensation doesn’t happen around the vortex, you see debris flying around in a circle but not much else — sort of an “invisible” tornado.  And, of course, if the clouds and the ground are at a particular distance apart, and the diameter of the rotational part in the cloud is a certain proportional size, and the debris field around the base on the ground isn’t very big, and if you happen to be standing in just the right place with a certain point of view — then the tornado looks like a triangle.

Virga: sheets of falling rain, seen from a distance.

A cloud that happened to hang down, maybe like a rain virga, and was shaped like a triangle, that did not rotate and did not have updraft in the center of it, would not be a tornado.  It would not cause damage.  It wouldn’t be dangerous.  It might be an interesting phenomenon, but it would not be a tornado.  The form of a tornado is a product of its function.  Details of the specific situation, such as how high the clouds are and how wide the rotation diameter is, create variation in the form.  But a tornado is a function-based phenomenon.  Even the very oddest-looking tornadoes in the line of photos above is still a tornado because it functions as one.

The bottom line of form — the thing that produces form — is function.

So what does this have to do with horse biomechanics?  Remember, I said at the outset of this post that sometimes it’s hard for me to realize how far form and function are divorced from each other in people’s awareness.  I have the artist and the tornado to thank for bringing this to my attention the first time.  But now that I’m working to help people understand horse biomechanics, I discover that the separation of form from function in people’s minds is extremely common. And so is the focus on form, all by itself.

If meteorologists thought that tornadoes really were triangles, if they did not understand that how tornadoes function is the most important thing to understand, that form is merely an outward manifestation — almost a side-effect — of this critically significant function, we would not have radar warnings to tell us to take shelter.  The ONLY way people could know a tornado was in the area would be if a spotter happened to see it and see it from exactly the right “triangle” vantage point.  It is understanding tornado function that allows us to predict them, to identify them on radar, and to design special structural elements that help keep buildings from flying apart in rotating tornadic winds.

Horses have anatomical systems of bone, muscle, connective tissue, and nerves that function, together, in a range of very specific ways.  Certain patterns of horse anatomical function produce forms that we recognize, just as certain functional patterns of wind rotation produce the recognizable form of a tornado.  The parts of a horse’s body are connected to each other in complex ways.  When certain nerves fire, they cause certain muscles to contract, which causes specific movement of certain parts of the skeleton.  The end result of this chain of causes may be that the horse’s head rises from a neutral position.  If so, this is a side-effect of the entire functional chain.  The raising of the head is a result, not a cause.

Yet, what I have learned is that many horse people see that a horse someone has identified as being collected has an elevated head — and conclude that this form of “elevated head” is the cause of collection, that it is the actual functional mechanism of collection.  They therefore pull on the reins and on a horse’s mouth to raise its head and “pull it into a frame”, thinking this will functionally produce collection.  But functionally, it can’t.  Bodies don’t work that way.

He’s not about to jump off the cliff as a result of having raised his arms. Jumping may cause a person to raise their arms, but raising their arms does not, therefore, cause them to jump.

Human beings tend to put their arms up and out when they leap into the air.  But you can’t “make” a person jump by having them raise their arms.  It doesn’t “go that direction”, functionally.  If humans were trained to jump by aliens (E.T.s) who did not understand the functional mechanisms of jumping, by aliens who focused instead solely on the one aspect of form “arms raised”, then these aliens would try to train humans to jump by lifting their arms over their heads with ropes and pulleys.  Presumably the aliens would be frustrated and irate when no one jumped as a result.

It is a trainer’s responsibility to learn what the anatomical functions are, that produce particular forms such as collection.  This is absolutely what the great trainers of the last few centuries have done.  They may quibble about the details (scientists do too!), but they understand very well that form is not a cause but a result.  If a rider trains her or his own horse, then they have just picked up the trainer’s level of responsibility in this matter, whether they know it or not.  And because the responsibility exists, so does the power to harm a horse that is forced to move in a way that produces only a meaningless form, on the assumption that the rest of a functional sequence will somehow follow even though the real cause-and-effect line flows the opposite direction.

Given that bones and muscles are largely hidden by the horse’s skin, how is a rider or trainer to understand the functional mechanisms that produce the forms they desire in their horses?  There are plenty of books and articles on horse functional anatomy and biomechanics available, and this blog and my seminars are two small contributions to that field of knowledge. But any time you read one of those that tells you to focus on FORM as the most important part of anything, as the part that produces function . . . stop and ask yourself our riddle:  “When is a horse like a tornado?”  Because right at that moment you will have encountered the answer:  “A horse and a tornado are alike when the person thinking about them focuses on FORM rather than FUNCTION.”

By the way, it turned out the artist had not really registered either the circular rotation or upward movement we had witnessed.  Instead, while watching the spectacle, spellbound, she had reflected on the photographs of tornadoes she had seen.  This is what prompted her question.  When I pointed out the functional aspects of tornado shapes, she explained that it didn’t matter at all to her because, as an artist, she only cared about representing images of tornadoes on paper or canvas — not creating functional ones.  I strongly suspect that most horsepeople, to the contrary, do want a functional horse rather than 2-dimensional representations of one.  So although horses and tornadoes may be alike when people think about them the same form-based way, the people who do the thinking — horsepeople and artists — may be rather different.

Although Leonardo da Vinci might disagree with that. . .

(At left, a page from one of da Vinci’s notebooks, detailing one of his studies of dissected arm and shoulder structures.  Other Renaissance artists also carried out dissections, which they carefully drew, realizing that they had to understand the function of human bodies in order to render their forms realistically.)

Finding Balance

The slogan Jo (my business partner) and I use for our horse work is “Balance, Center, Connect.”  This is the logo we designed for the first horse program we ever ran, which was at that time part of the work in which our non-profit, Tapestry Institute, was engaged.  We coined the phrase to refer not only to our horses’ own best functional states, and to the states that allow us to have our best riding experiences, but also, purely and simply, to ourselves as human beings.

We all know it’s difficult for a person who’s not physically balanced to ride well.  They continually throw their horse off-balance with their own off-kilter weight (which produces the “eccentric load” I talk about in my biomechanics seminars), accidentally asymmetrical hands and feet, or body stiffness that translates itself right into the horse.  The same is true of being physically centered.  And of course we need just the right amount of physical connection with the horse we’re riding to communicate responsibly as well as effectively.

But emotional balance matters, too.  Who among us has not had a miserable time riding, fussing with our horse for being “difficult,” only to realize with a sudden pang of guilt that we went out to ride that day already angry or upset about something else?  An emotionally unbalanced state communicates itself to our horses just as freely as it does to the humans around us, who can at least use spoken words to ask us to “lighten up” or “take a walk to calm down” before dealing with, and upsetting, them further.

When it comes to understanding how horses move and support themselves and their riders, it’s also important to balance different types of knowledge.  But doing so is extremely difficult because of our culture’s deeply-embedded assumption that logic, reason, and mathematics are the most valid ways of understanding reality.  “Factual” information is seen as trumping any other type, “science” is seen as producing the most reliable facts, and information that is mathematical is seen as being the “best” type of science.  Here’s an example of the result of this type of worldview.

Hilary Clayton, Ph.D., at Michigan State University’s College of Veterinary Medicine, has carried out studies on the biomechanics of bits.  Clayton is a solid researcher who holds excellent credentials and has published a number of books.  But her work can be a bit daunting for many people to read.  Her biomechanics and physiology books, in particular, are ones I would personally select for my students to use if I was teaching a graduate course in biomechanics, but be reluctant to recommend as an easy-to-use resource for a rider who doesn’t want to get a graduate degree.  Yet Clayton gets her work “out there” in clinics and talks — and is frequently misunderstood by people who are looking for “facts”, particularly mathematical ones they can hang their hats on with pride of knowledge.

Clayton’s work on horse bits was summarized and reported in Horse Science News in an article titled “Myler Bits Act Differently on Horses.”  More than half of the three-paragraph summary was devoted to mathematical data, such as:  “The jointed snaffle and Boucher bits both averaged 3.3 centimetres (1.3 inches) away from the teeth, whereas the Myler snaffle lay just 2 cm from the premolars. The other two Myler bits were located even closer, at 1.3 cm from the premolar teeth.”  A reader studying this report is left with the comforting notion that “something important” has been learned about bits, particularly about the place in the mouth that myler bits sit compared to other bits, and that single-jointed snaffle construction and rein tension are somehow relevant factors.  At the same time, I think it would be difficult for most riders to apply any of the information presented.  I also think, from my years of doing public education with Americans who both respect and dislike science (thanks in large part to nasty grade- and high-school experiences) that most of the people who couldn’t make heads or tails out of what to do with this information would assume the problem was their own — that they didn’t know enough, or weren’t smart enough, to see at once how to apply it.

The trickier part of this is that I also know, from long experience, that there are people who do bitting clinics as part of their general horse business who, when they come across this numbers-filled article, will figure out a way to say that the figures support whatever view of bits they propound in their clinics.  If you think people don’t do that, just watch the labels on (and ads for) products in the grocery store the next time there’s big news about a scientific study linking a particular nutrient or compound to some aspect of staying healthy.  And it makes sense if you think about it — as long as the “facts” have been appropriately represented in the press to begin with.  And that, as the PLoS Medicine article I just linked to shows, is the rub, right there.

On the other hand, take a look at this article summarizing Clayton’s bit research at Horse Journal on the Equisearch website.  (That’s not a rhetorical statement.  I really recommend you read the material to which I’ve linked.) This article, titled “Dr. Hilary Clayton Offers Many Prescriptions for Bits,” has an entirely different theme:  “Dr. Hilary Clayton has been studying the way bits act on horses’ mouths for more than 20 years. But even after all those years of systematic research, she still says that ‘finding the right bit is more a matter of trial and error than a scientific process.'”  The italics are my addition, to highlight the part of this statement I find particularly meaningful.  The article then goes on to list some generalized findings that will come as a surprise to many horsepeople — one of which is that many horses prefer smaller-diameter to larger-diameter bits because their mouths are smaller than we think they are — and then quotes Clayton categorically stating that the rider has to figure out which bit their own horse is most comfortable using:  “‘So the size and the shape of the bit is individual to every horse, meaning you have to keep trying until you find a bit they’re comfortable with”.  This is repeated in the article’s last line, which concludes:  “. . . Clayton still believes that finding the right bit for your horse is a matter of simply trying different bits.”  Please notice that this research scientist is emphasizing the real value of experiential knowledge here, rather than “fact”-based knowledge, in two ways:  (1) the rider is to use a personal trial-and-error method to try different bits and see how each one works, and (2) the rider is to assess each bit tested by using their own individual perception of how comfortable their horse is with that bit in its mouth.

You don’t have to look far to find publications in which people who claim “horse expert” authority denigrate the very idea that horse “comfort” matters or that humans can assess a horse’s comfort.  Further, such “experts” claim to use science, of all things, to give authority to their denigratation of experiential modes of understanding and to support their own fact-based system of information as not only best but also the only reliable source of knowledge. This is what leaves horsepeople feeling stuck, unable to get themselves and their horses out of situations that don’t feel right.

Yet here is a highly-credentialed research scientist who’s emphasizing experiential learning, the significance of a horse’s comfort, and the reliable ability of a horse owner to tell if their horse is comfortable or not.  Given that the non-scientist “bit expert” who denigrates the horse owner’s experiential learning is claiming the authority of science (supposedly), then should not the actual scientist have the higher authority in this case?  If so, then the paradoxical situation is that it is the scientist who turns over the tables on what type of knowledge has real value, placing the final authority squarely in the hands of a rider and the responses of her horse.  And if that rider says, “But I don’t know about bits,” then look again at the article I linked to and you will see that it addresses this issue.  Clayton points out the salient factors that usually impact bit comfort, that we need to pay attention to, including how high or low in the mouth the bit rides, whether it’s single jointed or has a flat area over the tongue, whether it touches the roof of the mouth, and the importance of paying as much attention as possible to the size of the mouth cavity since it’s not directly comparable to the horse’s body size.  In other words, there are pieces of “factual information” she’s learned in 20 years of bit research, and she’s passing those on in order to give riders information about what to look for as we run our own tests.  She is teaching us what to look at, how to see.

So that then we can make our own decisions.

That’s what science is about.  It’s about learning what factors exist, since usually we aren’t aware of even a tenth of them in normal practice.  It’s about learning which factors that we never even thought of are really important to pay attention to.  And then it’s about learning how to integrate information about these factors into a much larger scheme of understanding the subject so that we can make personal decisions that are wise and informed.  This is real science — which, interestingly, is based on trial-and-error (which is called “experimentation”) and personal assessment of results (which are called “sense-data”) — the two specific methods Clayton recommends horsepeople use to select the right bit for their own personal horse.  Oddly enough, the fact-based, supposedly “science”-based system we find so often in the horse world, that tells us horse comfort is an illusion, that riders can’t possibly decide what’s best for their horse (but must hand over decisions to Experts), and that all horses in a certain discipline “must” use a particular bit because “we know” that bits work in such-and-such a way is actually not scientific at all.  And I am saying that as a scientist with a doctorate from a major university, who has participated in policy discussions about the nature of science and of communicating science to the public in formal and informal education at the highest levels possible in the US.

All this being the case, my goal for this blog and for my seminars, both, is to share what I know about horse biomechanics and horse movement to help people learn how to see their horses better.  I want to share information that helps riders see and appreciate the really astonishing power and subtlety of response that exists in a horse’s systems of adaptation to stress, and to learn what to look at when they assess how their horse is moving.  I want to help people better understand the basic biomechanical adaptations of their own human bodies, to feel how subtly but profoundly those operate, and then use that information to understand the operation of those same systems in their horses’ bodies.  And I want them to be able to use this information, even twenty or thirty years from now, with everything else they know about horses in general and their own horse in particular, to feel confident enough about their own authority to tell a trainer, when necessary:  “No.  I realize the method of moving you use on horses may work for many, but it’s not good for my horse.  Thank you for your efforts to date, but I am discontinuing his training with you.”

The problem with my original blog post on force, stress, and the hoof was that it focused on numbers.  It focused on calculations. It focused on apparent absolutes that really do not exist except in the most artificial situations imaginable (where, for example, a horse is literally not moving a muscle).  And in doing all these things, it took us all to exactly the place I don’t want to go.

The first time I took it down, it was because I thought about all this.  What I did was put it back up with a paragraph added near the beginning:  “I want to say at this point that calculating, or even measuring, force in a living body is extremely difficult — sometimes impossible — for practical reasons having to do with the incredibly responsive systems of animal support, balance, and locomotion, and the fact that contraction in even a single muscle is generally along a wave that makes its force vectors change rapidly and dramatically.  So the goal of this blog and the next is to look at things in just enough detail for you to get a working idea of the levels of load on horse hooves, and the sorts of things that impact those loads for better or worse.”

But the post still bothered me.  Because I knew very well that my disclaimer — which was the real point of all the horse biomechanics work I do — was going to be monumentally outweighed by the correct but almost meaningless calculations I had gone to such great lengths to explain, about force and stress in the hoof.  And finally I realized I have to go about explaining this a different way — one that focuses on the issues of subtlety and responsiveness in the horse’s living systems of adaptation.  One that leaves the numbers out unless there’s an essential reason for them, and then makes very certain to keep them in perspective.  One in which all the different ways of knowing about and understanding how horses move are in balance and connected.

I close with the same Calvin and Hobbes cartoon with which I opened my ill-fated post of hoof stress calculations, this time focusing your attention on all the different ways of knowing that Hobbes combines to be an effective tiger. The laws of physics and the principles of biology are important factors, but so are art and ethics.  All I can say is:  right on.

So now I’m in balance again, not focused all to one side of things with purely intellectual and mathematically-based knowledge.  And I’m centered once more, squarely in the framework of the goals I have for this blog, my seminars, and my life work in general.  The result, I hope, is that I’m better connected to you, the reader.

And NOW we can go on to consider force and stress in the hoof . . . this time, in a way that has a little more meaning, and meaning you can use.

See you next week.

 

This post was a featured blog entry on BarnMice, Jan. 2, 2013.

Understanding the Horse

It seems like such a straight-forward title, “Understanding the Horse.”  Yet if it was easy to do, we wouldn’t have a book, video, clinic, and training industry that’s worth billions of dollars annually.

Two aspects of understanding the horse are represented by the seminars I offer via this website:  how horses stand and move, and how horses relate to humans through story.  While these may seem like two very different things, they are really deeply connected.  Consider, as just one example, the fact that apparently one universal symbolic meaning of horses is “rapid forward movement.”  It is for this reason, the psychologist Carl Jung pointed out, that horses are depicted in the iconography of “Knights” in the Tarot deck — developed at least as long ago as the 14th Century in Europe — to signify symbolically that an issue being asked about will move forward rapidly. So the rapid speed at which horses can move is symbolically a very deep part of the human psyche.

Biomechanics is a field of study that allows us to explore and understand how and why, anatomically, horses are able to move this way.  Study of the bones and muscles, as well as other soft tissues, and of their material properties and orientations allows us to appreciate how these animals can run at a speed of 30 miles an hour while carrying a second animal, one that may weigh as much as a quarter of its own body weight, on its back.  If you have ever carried a toddler on your back, and particularly if you’ve tried to jog or run with that child in place, you’ve got an idea of the specialized structures that must be in place for a horse to do this successfully.

Because I am a scientist trained in biomechanics, I have a solid understanding of the adaptations that allow horses to run at high speeds while carrying people on their backs.  And because I worked for many years in the field of interdisciplinary scholarship that integrates science with art, philosophy, spirituality, story, and culture, I have a good grasp of the ways that horses can be understood by looking at the roles they play in art, movies, books, and other expressions of culture.  And because I am a Choctaw Indian woman, such integration of knowledge is fundamental to the way I see and experience the world.  In the years that I was on a national speaking circuit addressing university and seminary faculty and students about these matters, I learned that many people in contemporary culture are hungry for this same integrated approach.

Over the coming months, we will be adding more ways of understanding horses to this website, and another blogger will join me in posting insights, questions, and thoughts.  For now, there’s this first post.  I hope you find what’s written here evocative and useful.  If nothing else, I hope it makes you go outside and look at your horse in a new way, maybe even one where you’ve got your head tipped to one side and a big grin spreading over your face.

Here’s to you and your horse!  Long may you run, together!